
 International Journal of Computer Trends and Technology Volume 71 Issue 8, 28-33, August 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I8P104 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

 API Integration using GraphQL

Anshumali Ambasht

 Deloitte Consulting, Chicago, IL, United States of America.

Received: 12 June 2023 Revised: 22 July 2023 Accepted: 08 August 2023 Published: 27 August 2023

Abstract - API integration has become a cornerstone of modern software development, enabling applications to interact with

external services seamlessly. GraphQL, a powerful query language for APIs, has gained substantial traction due to its

flexibility and efficiency in data retrieval. This article delves into the realm of API integration using GraphQL. It explores the

core concepts of GraphQL, its advantages over traditional REST APIs, implementation strategies, best practices, real-world

use cases, and the future of GraphQL in the world of software development.

Keywords - Real-Time, API Integration, Schema, Data retrieval, GraphQL.

1. Introduction
In the interconnected digital applications and services

era, the seamless exchange of data and functionality among

diverse systems has become imperative. This has given rise

to the pivotal role of Application Programming Interfaces

(APIs) in modern software development. APIs serve as

bridges that enable applications to interact with external

services, opening avenues for collaboration, innovation, and

efficiency. While traditional Representational State Transfer

(REST) APIs have been a staple, GraphQL has emerged as a

game-changing alternative, offering a novel approach to API

integration. This article delves into the domain of API

integration using GraphQL, exploring its core principles,

advantages over REST, and the potential it holds for

reshaping how applications communicate.

APIs have undergone a transformative evolution,

transitioning from simple data endpoints to comprehensive

ecosystems that enable complex interactions. The rise of

REST APIs brought a standardized approach to structuring

and requesting data, allowing applications to communicate

over the web. However, REST APIs have faced challenges

related to over-fetching or under-fetching data, leading to

suboptimal performance and response times. This article

delves into GraphQL, a query language for APIs developed

by Facebook in 2012 and released to the public in 2015.

GraphQL addresses some of the limitations of REST by

providing a more flexible and efficient means of data

retrieval. It empowers clients to request the data they need

precisely, reducing the burden of multiple requests and

redundant data transfers.

The essence of GraphQL lies in its ability to shift the

power of data fetching from the server to the client. Unlike

REST, where each endpoint corresponds to a specific data

structure, GraphQL allows clients to craft queries that

specify the exact data requirements. This dynamic nature of

GraphQL empowers developers to shape responses according

to the unique needs of user interfaces, optimizing

performance and reducing network overhead. Furthermore,

GraphQL's introspective nature enables clients to query the

schema itself, facilitating self-documentation and simplifying

the discovery process. As software systems become

increasingly complex and interconnected, GraphQL emerges

as a solution that enhances data exchange efficiency and

streamlines the development process, allowing for more agile

and responsive applications.

2. Literature Review
The landscape of API integration has witnessed

significant shifts with the emergence of GraphQL as a

powerful alternative to traditional REST-based approaches.

Scholars and practitioners alike have delved into the

potentials and nuances of GraphQL in the context of modern

software development. Researchers such as Hartig et al.

(2018) have highlighted the flexibility and efficiency offered

by GraphQL, emphasizing its role in enabling clients to

request the data they need precisely. This granularity

enhances performance and simplifies front-end development

by reducing over-fetching or under-fetching data

complexities. GraphQL's schema evolution capabilities align

with the dynamic nature of modern software systems,

fostering adaptability and rapid iteration.

GraphQL has its relevance in domains beyond web and

mobile applications. Experts like Gözneli (2020) have

investigated GraphQL's integration potential in the context of

microservices architecture, a growing trend in software

development. GraphQL's ability to serve as a gateway for

diverse services while minimizing round-trips aligns well

with microservices' emphasis on decoupled, independently

deployable components. Furthermore, researchers such as

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Anshumali Ambasht / IJCTT, 71(8), 28-33, 2023

29

Lawi et al. (2021) have examined GraphQL's performance

characteristics under different scenarios, shedding light on

how it handles complex queries and large datasets. This

empirical research aids in understanding GraphQL's

strengths and limitations, informing developers' decisions

when choosing the appropriate integration strategy for their

applications.

3. GraphQL Architecture
GraphQL serves as a specification outlining the

operational behavior of a GraphQL server. It encompasses a

series of directives governing the treatment of requests and

responses, encompassing supported protocols, the acceptable

data format for server ingestion, and the structure of the

server's response. At its core, GraphQL provides a blueprint

for harmonious communication between clients and servers.

When a client initiates communication with a GraphQL

server, the request is referred to as a "Query," encapsulating

the client's data retrieval requirements.

Fig. 1 GraphQL server with connected database

Fig. 2 GraphQL server that integrates existing systems

 A pivotal characteristic of GraphQL is its adaptability to

various transport layers, a concept known as "transport layer

agnostics." This attribute allows GraphQL to seamlessly

integrate with a spectrum of network protocols, including

TCP, websockets, and other transport layer mechanisms.

Furthermore, GraphQL maintains a database-neutral

stance, rendering it compatible with both relational and

NoSQL databases. This feature offers developers the

freedom to harness GraphQL's capabilities across diverse

data storage systems.

 Deployment of a GraphQL server can be executed

through several distinct methods, presenting a range of

deployment strategies. The foremost approach involves

coupling the GraphQL server with a connected database,

creating an integrated environment where data and queries

align seamlessly. Refer to Fig 1.

Alternatively, GraphQL servers can be orchestrated to

interoperate with existing systems, affording the flexibility to

integrate GraphQL into established infrastructures. Refer to

Fig 2.

 Query

HTTP POST

DB

 Query

 HTTP POST

DB

DB

DB

Legacy
System

DB

Microservices

RESTful API

Anshumali Ambasht / IJCTT, 71(8), 28-33, 2023

30

Fig. 3 Hybrid approach

 A hybrid approach represents a fusion of the

aforementioned strategies, enabling developers to select the

most suitable deployment mode for their specific use case.

Refer to Fig 3.

4. Understanding GraphQL with Examples
4.1. Schema

The schema is the foundation of GraphQL. It defines the

types of data available in the API and their relationships.

Types represent objects, and each type has fields

corresponding to the object's attributes. Here's an example of

a simple schema with two types: User and Post.

 Fig. 4 GraphQL schema

4.2. Types

Types define the structure of data in GraphQL. They can

represent objects, scalars (integers, strings, etc.), and custom-

defined types. In the example above, User and Post are

custom types.

4.3. Fields

 Fields represent the attributes of a type. They allow

clients to request specific pieces of data. Fields can also have

arguments to customize the data returned. In this query, we

request the name and email fields for a user with ID 1.

 Fig. 5 GraphQL fields

4.4. Queries

 Queries are used to fetch data from the server. They

mirror the shape of the data the client expects to receive.

For instance, this query requests the title and content of a

post with ID 123.

Fig. 6 GraphQL queries

DB

DB

DB

Legacy

System

Microservices

RESTful API

 Query

HTTP POST
GraphQL

Server

Anshumali Ambasht / IJCTT, 71(8), 28-33, 2023

31

4.5. Mutations

Mutations are used to modify data on the server. They

represent actions like creating, updating, or deleting data. In

this example, we use a mutation to create a new post.

 Fig. 7 GraphQL mutations

4.6. Resolvers

Resolvers are functions that define how data is retrieved

for each field. They fetch and return the requested data from

the underlying data sources.

4.7. Introspection

GraphQL supports introspection, allowing clients to

query the schema itself. This self-documenting feature

simplifies the discovery process. For instance, you can query

the types and fields available in the schema:

 Fig. 8 GraphQL introspection

Understanding these key concepts empowers developers

to design APIs that cater precisely to their application's data

needs. GraphQL's flexibility and efficiency emerge from

these principles, enabling better data exchange and enhanced

user experiences.

5. Advantages of GraphQL
This section delves into the various advantages of

GraphQL.

5.1. Eliminating Over-Fetching and Under-Fetching

 One of the standout advantages of GraphQL is its ability

to tackle the long-standing issue of over-fetching and under-

fetching data. Traditional REST APIs often return fixed data

structures, resulting in clients retrieving more data than they

need (over-fetching) or having to make multiple requests for

related data (under-fetching). GraphQL addresses this by

allowing clients to specify exactly what data they require for

a given query. This feature not only optimizes data transfer

but also enhances application responsiveness by minimizing

unnecessary network traffic.

5.2. Tailored Data Retrieval

 GraphQL empowers front-end developers by putting

them in control of the data they receive. Unlike REST APIs,

where the server dictates the shape of responses, GraphQL

enables clients to shape the responses according to their

specific needs. This dynamic interaction between the client

and server fosters front-end flexibility, as developers can

structure their queries to precisely match UI requirements.

This advantage translates into faster development cycles and

more efficient collaboration between front-end and back-end

teams.

5.3. Single Endpoint for Multiple Queries

 With REST APIs, each endpoint corresponds to a

specific resource or action. This can lead to a proliferation of

endpoints as applications grow in complexity. GraphQL

streamlines this by offering a single endpoint for all queries

and mutations. Clients can request various data in a single

query, reducing the number of round-trips to the server. This

consolidated approach enhances efficiency and simplifies the

architecture, making managing and maintaining the API

easier.

5.4. Introspection and Self-Documentation

 GraphQL embraces introspection, a feature allowing

clients to query the schema to understand the available types,

fields, and operations. This built-in self-documentation aids

developers by providing a clear understanding of the API's

capabilities, eliminating the need for external documentation

that can become outdated. This advantage accelerates the

onboarding process for new team members and encourages a

more exploratory approach to working with APIs.

5.5. Evolving APIs Gracefully

 APIs are living entities that evolve over time to

accommodate changing requirements. Traditional REST

APIs often necessitate versioning to avoid breaking existing

clients. GraphQL handles this gracefully by allowing for the

deprecation of fields or types, enabling smoother transitions

as the API changes. This advantage promotes backward

compatibility and eases the burden of managing multiple API

versions.

6. Real World Applications
GraphQL's efficiency and flexibility have found

applications in various domains.

6.1. Dynamic Web Applications

GraphQL's ability to precisely retrieve the required data

makes it ideal for building dynamic and interactive web

applications. Consider an e-commerce platform where users

Anshumali Ambasht / IJCTT, 71(8), 28-33, 2023

32

can explore products, reviews, and related information on a

single page. With GraphQL, the client can query only the

necessary fields, streamlining data retrieval and enhancing

the user experience. This approach ensures the application

remains responsive and agile, adapting to real-time user

actions.

6.2. Mobile Apps

Mobile applications often face challenges related to

limited bandwidth and varying device capabilities.

GraphQL's tailored data retrieval minimizes the data

transferred over the network, resulting in faster load times

and improved app performance.

Mobile developers can request precisely the data needed

for the app's UI, eliminating the need to sift through

extraneous data. Whether it's a social media feed, a news

aggregator, or a fitness app, GraphQL's efficiency enhances

the mobile app experience.

6.3. Aggregating Data from Multiple Sources

In scenarios where data is spread across various services

and databases, GraphQL shines as an aggregator. Consider a

content delivery platform that sources data from external

providers, internal databases, and user-generated content.

GraphQL can unify these disparate data sources, providing a

singular, coherent API that clients can query. This ability to

consolidate data retrieval simplifies the client's interaction

with multiple services, streamlining development and

maintenance efforts.

6.4. Personalized Content Delivery

The demand for personalized experiences is rising, and

GraphQL's capabilities align perfectly with this trend.

Imagine a music streaming service that tailors

recommendations to individual user preferences. With

GraphQL, the client can request custom combinations of

artists, genres, and playlists, ensuring the retrieved data is

tailored to the user. This level of personalization enriches

user engagement and fosters loyalty.

6.5. Back-end for Front-end (BFF) Patterns

Front-end applications often require specific data

structures that differ from the original back-end data models.

GraphQL's ability to shape responses to match front-end

requirements aligns well with the Back-end for Front-end

(BFF) pattern. This pattern involves creating tailored APIs

for specific front-end applications to optimize data retrieval.

GraphQL is a natural fit for implementing BFF patterns,

allowing front-end developers to request precisely the data

they need.

6.6. Microservices Architecture

Microservices architectures, where applications are

composed of small, decoupled services, can benefit from

GraphQL's ability to act as a single entry point. Each

microservice exposes its data via GraphQL, and the client

can retrieve data from multiple services with a single query.

This reduces the need for numerous API calls and simplifies

front-end development, aligning well with microservices'

emphasis on autonomy and agility.

7. Challenges and Considerations in

Implementing GraphQL
While GraphQL offers a wealth of advantages, like any

technology, it comes with its own set of challenges and

considerations that developers and teams must be aware of.

This section explores some of these challenges and offers

insights into navigating them effectively.

7.1. Potential Over-Fetching and Under-Fetching

While GraphQL addresses the issue of over-fetching and

under-fetching to a large extent, poor query design can still

lead to these problems. Developers must ensure that queries

are crafted efficiently to retrieve only the necessary data.

Overly complex queries might inadvertently fetch more data

than required, impacting performance and response times.

7.2. Complex Queries and Performance

GraphQL's flexibility allows clients to create complex

queries with deeply nested fields. While this enhances the

tailored nature of responses, it can also lead to performance

issues if not managed properly. Deeply nested queries might

result in long-running queries and affect server response

times. Caching strategies and query optimization techniques

become crucial to mitigate this challenge.

7.3. Security Concerns

GraphQL exposes all fields and types in the schema by

default, potentially leading to data leakage if not managed

carefully. Implementing proper authentication and

authorization mechanisms is essential to ensure that sensitive

data remains secure. Additionally, malicious queries or

denial-of-service attacks can be a concern if not mitigated

using query complexity analysis and depth limiting.

7.4. Learning Curve for Developers

Switching to GraphQL might require developers to learn

new concepts and paradigms. This can be a challenge,

especially for teams with a strong background in REST

APIs. Training and educational resources are important to

ensure the team is equipped to maximise GraphQL's

capabilities.

7.5. Lack of Standardization

While GraphQL is a specification, the implementation

details can vary between different server frameworks and

libraries. This lack of standardization can lead to

inconsistencies in how GraphQL is implemented across

different projects. Staying updated with best practices and

evolving standards is essential to maintain code quality and

compatibility.

Anshumali Ambasht / IJCTT, 71(8), 28-33, 2023

33

7.6. Tooling and Ecosystem

While GraphQL has a growing ecosystem of tools and

libraries, it might not be as extensive as the ecosystem for

more established technologies like REST. Finding the right

tools for tasks like schema validation, query optimization,

and caching might require some research and

experimentation.

7.7. Migration and Compatibility

Integrating GraphQL into an existing application might

require a migration effort. Ensuring backward compatibility

for existing clients while introducing new GraphQL features

can be challenging. Proper versioning and communication

with clients are crucial during such transitions.

7.8. Testing and Documentation

Testing GraphQL APIs can be more complex than

traditional REST APIs due to the dynamic nature of queries.

Comprehensive testing, including edge cases and complex

queries, ensures robustness. Additionally, keeping GraphQL

documentation up to date is important for both internal teams

and external consumers of the API.

8. Conclusion
In the ever-evolving realm of API development,

GraphQL stands as a testament to innovation and

adaptability. Its flexible data retrieval, precision-driven

responses, and ability to reshape frontend-backend

collaboration have revolutionized how data-driven

applications are built and experienced. As we conclude this

exploration of GraphQL, it's essential to recognize its

transformative potential while being cognizant of its

challenges.

 GraphQL offers a paradigm shift by empowering

developers to define their data needs precisely, eliminating

over-fetching and under-fetching woes. This optimization

results in improved performance, reduced network overhead,

and an enhanced user experience.

Tailoring responses to match front-end requirements

simplifies development cycles, fostering tighter team

collaboration and expediting application time-to-market.

 However, embracing GraphQL requires a nuanced

approach. Addressing potential complexities in query design,

managing performance for complex queries, and upholding

security standards are integral to successful implementation.

Navigating the learning curve, selecting appropriate tooling,

and ensuring seamless migration in existing systems demand

strategic planning and continuous education.

 As GraphQL continues its ascent, it underscores the

dynamic nature of software development. The landscape is

not just about mastering a technology but also understanding

its implications, challenges, and best practices. By

acknowledging GraphQL's capabilities, harnessing its

advantages, and tackling its challenges head-on, developers

are poised to build applications that embody efficiency,

flexibility, and the ability to adapt to the ever-evolving

demands of the digital era.

The journey with GraphQL is both transformative and

enriching, and as the technology evolves, so will the horizons

of possibility in modern software development.

References
[1] Olaf Hartig, and Jorge Pérez, "Semantics and Complexity of GraphQL," In Proceedings of the 2018 World Wide Web Conference, pp.

1155–1164, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[2] Berke Gözneli, "Identification and Evaluation of a Process for Transitioning from REST APIs to GraphQL APIs in the Context of

Microservices Architecture," Department of Informatics Technical University of Munich., pp. 1-73, 2020. [Google Scholar]

[3] Armin Lawi, Benny L. E. Panggabean, and Takaichi Yoshida, "Evaluating GraphQL and REST API Services Performance in a Massive

and Intensive Accessible Information System," Computers, vol. 10, no. 11, pp.1-16, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] GraphQL Conf, GraphQL, 2021. [Online]. Available: https://graphql.org/learn/

[5] GURU 99, GraphQL Tutorial for Beginners: What is, Features and Example, 2023 [Online]. Available:

https://www.guru99.com/graphql-tutorial.html

[6] We Learn Code, A Complete Beginner's Guide to GraphQL, [Online]. Available: https://welearncode.com/beginners-guide-graphql/

[7] IBM, GraphQL, 2023. [Online]. Available: https://www.ibm.com/docs/en/scis?topic=reference-graphql

https://doi.org/10.1145/3178876.3186014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C14&q=Semantics+and+Complexity+of+GraphQL&btnG=
https://dl.acm.org/doi/abs/10.1145/3178876.3186014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C14&q=Identification+and+Evaluation+of+a+Process+for+Transitioning+from+REST+APIs+to+GraphQL+APIs+in+the+Context+of+Microservices+Architecture&btnG=
https://doi.org/10.3390/computers10110138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C14&q=Evaluating+GraphQL+and+REST+API+Services+Performance+in+a+Massive+and+Intensive+Accessible+Information+System&btnG=
https://www.mdpi.com/2073-431X/10/11/138

